深圳德正堂生物科技有限公司

微生(shēng)理系統研究進展

發布時間:2019-09-14 18:36:44    來源:

    組織工(gōng)程技術在快速發展30年後,由最初的簡單組織構建(例如皮膚的構建)逐步發展到複雜髒器以及微生(shēng)理系統的制備。在2014年,由美國國家衛生(shēng)研究院(NIH)、美國國防部研究計劃推動局(DARPA)和美國食品和藥物(wù)管理局(FDA)共同參與、資(zī)助了微生(shēng)理系統的開(kāi)發及應用工(gōng)作,包括貝勒醫學院、哥倫比亞大(dà)學、康乃爾大(dà)學、杜克大(dà)學、約翰霍普金斯大(dà)學、麻薩諸塞州總醫院和哈佛醫學院、麻省理工(gōng)學院、西北大(dà)學、諾華制藥、加州大(dà)學歐文分(fēn)校、中(zhōng)佛羅裏達大(dà)學、賓夕法尼亞大(dà)學、匹茲堡大(dà)學、德州大(dà)學醫療分(fēn)部、以及範德堡大(dà)學等20多個研究機構參與了這一(yī)宏大(dà)的計劃。


    微生(shēng)理系統(也常被稱爲器官芯片)指在體(tǐ)外(wài)構建類似人體(tǐ)各種組織及器官間聯系的系統,每個系統被設計用來模拟人類器官或内髒器官區域的結構和功能,并且通過微流控系統連接。它們可在體(tǐ)外(wài)以極大(dà)的生(shēng)理精度來模拟、研究藥物(wù)與細胞間,細胞與細胞間,器官與器官間的相互作用。
    根據2014年的論文報導,目前正在進行微生(shēng)理系統的開(kāi)發與應用研究,比如在體(tǐ)外(wài)模型中(zhōng)的骨和軟骨,腦,胃腸道,肺,肝,心髒,微血管,生(shēng)殖道,骨骼肌,皮膚,和器官芯片之互連來進行生(shēng)理藥物(wù)動力學、藥物(wù)發現和篩選,以及調節幹細胞增殖與分(fēn)化等。創建微生(shēng)理系統的最初目标是爲了提升人類相關藥物(wù)之研發與測試的效率。該技術着重應用于包括環境毒素對人類的影響,化學品及生(shēng)化武器之鑒定、控制誘導多功能性幹細胞的特定分(fēn)化,以及人體(tǐ)器官間之代謝與信号轉導的動态變化。爲了推動微生(shēng)理系統的發展,我(wǒ)們必須整合多個技術領域,包括微流控芯片、幹細胞生(shēng)物(wù)學、三維微結構/矩陣、多細胞工(gōng)程、各種生(shēng)物(wù)檢測技術和資(zī)料庫工(gōng)具,以及計算單一(yī)或是多個器官系統的電腦模型。微生(shēng)理系統将革命性的改變基礎生(shēng)物(wù)學,生(shēng)理學,藥理學,毒理學和藥物(wù),以及一(yī)個新的領域:定量系統藥理學,因爲反複性實驗、疾病模型、藥效學和藥物(wù)動力學計算模型是這一(yī)新領域的核心。微生(shēng)理系統應該着重在創造出具有生(shēng)理意義、簡易、可重複、以及具有成本效益的工(gōng)具來造福整個科學界。
    美國食品藥品管理局國家毒理學研究中(zhōng)心主任評論到:“利用微生(shēng)理系統從生(shēng)理學、毒理學模拟人體(tǐ)反應來看,确實是有可能的;大(dà)量的基礎生(shēng)物(wù)學和生(shēng)理學技術的整合利用也将使我(wǒ)們對于人類健康和疾病過程有更多的了解。”

REF:
【1】ADDIN EN.REFLIST Andersen, M. E., K. Betts, et al. (2014). "Developing Microphysiological Systems for Use as Regulatory Tools - Challenges and Opportunities." Altex-Alternatives to Animal Experimentation 31(3): 364-367.             
【2】Cimetta, E., A. Godier-Furnemont, et al. (2013). "Bioengineering heart tissue for in vitro testing." Current Opinion in Biotechnology 24(5): 926-932.
【3】Esch, M. B., A. S. T. Smith, et al. (2014). "How multi-organ microdevices can help foster drug development." Advanced Drug Delivery Reviews 69: 158-169.                
【4】Fabre, K. M., C. Livingston, et al. (2014). "Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue." Experimental Biology and Medicine 239(9): 1073-1077.             
【5】Guo, Z. Y., C. A. Higgins, et al. (2013). "Building a microphysiological skin model from induced pluripotent stem cells." Stem Cell Research & Therapy 4.             
【6】Hong, S., Y. Jung, et al. (2014). "Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems." Lab on a Chip 14(3): 514-521.          
【7】Kolaja, K. (2013). "Stem cell derived tissues and microphysiological systems: A paradigm shifting moment." Veterinary Journal 198(1): 1-2.          
【8】Mathur, A., P. Loskill, et al. (2013). "Human induced pluripotent stem cell-based microphysiological tissue models of myocardium and liver for drug development." Stem Cell Research & Therapy 4.      
【9】Moya, M., D. Tran, et al. (2013). "An integrated in vitro model of perfused tumor and cardiac tissue." Stem Cell Research & Therapy 4.              
【10】Moya, M. L., Y. H. Hsu, et al. (2013). "In Vitro Perfused Human Capillary Networks." Tissue Engineering Part C-Methods 19(9): 730-737.          
【11】Slikker, W. (2014). "Of human-on-a-chip and humans: Considerations for creating and using microphysiological systems." Experimental Biology and Medicine 239(9): 1078-1079.         
【12】Smith, A. S. T., C. J. Long, et al. (2013). "Microphysiological systems and low-cost microfluidic platform with analytics." Stem Cell Research & Therapy 4.         
【13】Sutherland, M. L., K. M. Fabre, et al. (2014). "The National Institutes of Health Microphysiological Systems Program focuses on a critical challenge in the drug discovery pipeline INTRODUCTION." Stem Cell Research & Therapy 4.               
【14】Tourovskaia, A., M. Fauver, et al. (2014). "Tissue-engineered microenvironment systems for modeling human vasculature." Experimental Biology and Medicine 239(9): 1264-1271.           
【15】Truskey, G. A., H. E. Achneck, et al. (2013). "Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing." Stem Cell Research & Therapy 4.           
【16】Tuan, R. S. (2014). "Microphysiological systems to model tissue/organ units." Journal of Tissue Engineering and Regenerative Medicine 8: 10-10.      
【17】Wikswo, J. P. (2014). "The relevance and potential roles of microphysiological systems in biology and medicine Introduction." Experimental Biology and Medicine 239(9): 1061-1072.